Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019

نویسندگان

چکیده

A consistently processed annual global nighttime lights time series (2012–2019) was produced using monthly cloud-free radiance averages made from low light imaging day/night band (DNB) data collected by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS). The processing steps are modified original methods developed to produce products nightly data. Only two years of VIIRS (VNL) were with V.1 methods: 2015 and 2016. Here we report on used a V.2 VNL filtering remove extraneous features such as biomass burning, aurora, background. In this case, outlier removal is achieved twelve-month median, which discards high outliers, thus isolating background narrow range radiances under 1 nW/cm2/sr. Background areas no detectable lighting further isolated statistical measure texture, 3 × (DR). DR threshold for zeroing out rises number observations falls. method extends temporal leverage in noise developing multiyear maximum percent grid. Additional grid cells that have average (<0.6 nW/cm2/sr) detection only one or eight. spatial extent levels compared VNL. For vast majority cells, nearly same products. However, product has more dim detected. key advantages include consistent across all years, optimizing set change analyses.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran

Considering the fact that natural gas is a widely used energy source,  the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...

متن کامل

Time Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran

Considering the fact that natural gas is a widely used energy source,  the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...

متن کامل

DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration

The Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) stable lights products are made using operational OLS data collected at high gain settings, resulting in sensor saturation on brightly lit areas, such as city centers. This has been a paramount shortcoming of the DMSP-OLS stable lights time series. This study outlines a methodology that greatly expands the dynam...

متن کامل

Modeling and prediction of time-series of monthly copper prices

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...

متن کامل

Monitoring the NOAA Operational VIIRS RSB and DNB Calibration Stability Using Monthly and Semi-Monthly Deep Convective Clouds Time Series

The Visible and Infrared Imaging Radiometer Suite (VIIRS) onboard the Joint Polar Satellite System (JPSS)/Suomi National Polar-Orbiting Partnership (SNPP) satellite provide sensor data records for the retrievals of many environment data records. It is critical to monitor the VIIRS long-term calibration stability to ensure quality EDR retrieval. This study investigates the radiometric calibratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs13050922